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Abstract. A renormalisation group analysis of anomalous diffusion in a random medium 
with constrained long-range correlations is carried out to two-loop order. The crossover 
between the long-range correlated model and its short-range correlated counterpart is 
investigated and the dynamic exponent z is shown to be continuous at the crossover. 

1. Introduction 

Several authors have recently investigated the effect of random disorder on classical 
transport processes using a model of a random walk in a stationary random drift field. 
This model is a generalisation of the usual model of a diffusion process to the case of 
a system with quenched disorder and it may describe various physical situations, e.g. 
classical conductivity in the presence of randomly distributed charged impurities [ 13, 
diffusion in a fluid with stationary random velocity field [2, 31 or critical dynamics in 
a system with ‘frozen’ fluctuations [4]. This ‘random random walk’ problem is also 
related to the recent model of a ‘true’ self-avoiding random walk [5], and it has even 
been suggested that a model of this type could provide a clue to the solution of the 
famous l/f problem [6]. 

The asymptotic properties of diffusion in a medium with short-range correlated 
random drift have been studied using the renormalisation group (RG) approach both 
in the case of unconstrained (isotropic) drift [7, 81 and in the case of disorder with 
constraints (i.e. with independent curl-free and divergence-free parts of the random 
drift) [2-4,9]. In order to distinguish these models from their ‘long-range’ counterparts, 
which shall be defined below, we shall refer to them as to the short-range case, although 
actually the constraints imposed on the drift field lead to long-range spatial correlations. 
Above the upper critical dimension d > d ,  = 2 normal diffusion is shown to take place 
in the long-time limit, while at d S 2 the following patterns of anomalous diffusive 
behaviour occur: purely divergence-free drift leads to superdiffusive behaviour; when 
both components of the drift are non-zero diffusion remains normal at two dimensions 
and at d < 2  exhibits a subdiffusive anomaly, which does not depend on the relative 
impact of the components; in the most subtle case of purely curl-free drift vanishing 
of the RG beta function [9-111 leads to non-universal subdiffusive behaviour at two 
dimensions and below it to the strong disorder regime, which cannot be treated in the 
perturbative RG approach. 
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A generalisation of this model to the case of drift with power-like behaviour of 
correlations in the momentum space (the 'long-range' model mentioned above) in the 
case of an unconstrained drift field has been analysed at the one-loop level as a special 
case of the 'true' self-avoiding random walk problem with long-range interaction [ 121 
and in the generic form with some perturbatively exact results [ 10, 131. This analysis 
has revealed the following properties of the diffusive behaviour in the long-range 
model. Diffusion is normal above the upper critical dimension d > d ,  = 2 + 2a, where 
a is the exponent of the power-like falloff l /q*"  of the disorder field correlations in 
the momentum space. When d S d , ,  three different anomalous patterns of diffusion 
may take place. First, in the case of purely transverse drift field the anomalous 
dimension of time is related to the beta function of the model in such a way that the 
fixed-point equation determines this anomalous dimension exactly to all orders in 
perturbation theory [ 131. It should be noted that this result is true also in the short-range 
case. This anomalous dimension corresponds to superdiff usive behaviour. Second, in 
the generic case (i.e. when both the longitudinal and transverse components of the 
drift are present) asymptotic behaviour in the model is controlled by aJixed line rather 
than a fixed point of the RG equation. Hence, the anomaly of diffusion is non-universal, 
depending on the relative strength of transverse and longitudinal parts of the disorder 
field: the former tends to enhance diffusion, while the latter tends to suppress it. Third, 
in the case of purely curl-free drift the situation is the same as in the short-range case: 
the beta function vanishes, which results in non-universal subdiffusive behaviour at 
d = 2 + 2a and a non-perturbative regime at d < 2 + 2a. Unfortunate as it is from the 
point of view of the full RG analysis of the model, this possibly leaves a loophole [IO] 
(through a strong disorder regime) for the logarithmic diffusion of Marinari et a1 [6] 
to exist at d < 2 + 2a within the framework of continuum models. 

The purpose of this paper is to present a two-loop renormalisation group analysis 
of anomalous diffusion in a random environment with constrained long-range corre- 
lated random drift, including the analysis of the crossover to the case with short-range 
correlations. The correlation functions of the Gaussian long-range random drift fall 
off like l /q2" in the momentum space, and formally the short-range case corresponds 
to a = 0. We have calculated the two-loop contributions to beta functions and the 
dynamic exponent z in the long-range case and found that they contain poles in the 
parameter a. Thus, not only do the anomalous dimensions of the long-range model 
differ from those of the short-range model in the limit a + 0, but they even diverge in 
this limit. These divergences are due to a 'dangerous' irrelevant four-point interaction 
and we show that, when the effect of this interaction is taken into account, the long-range 
fixed point becomes unstable near two dimensions resulting in a crossover to a mixed 
regime, which is characterised by the interplay of both the long-range and the short- 
range correlations. This mixed regime has been recently analysed by Gevorkian and 
Lozovik [ 141 in the case of isotropic drift and we extend their treatment to the generic 
case. Further, from the mixed regime a crossover to the short-range case may take 
place and we show at the lowest non-trivial order that the dynamic exponent z does 
not have discontinuities at the crossovers. 

This paper is set up as follows. In § 2 we introduce the field-theoretic treatment 
of the stochastic problem of a random walk in a random medium. In Q 3, renormalisa- 
tion of the field-theoretic model is carried out and in § 4 the unusual properties of 
renormalisation group equations and anomalous diffusion are discussed. In 5 5 we 
analyse the crossover between the short-range and the long-range model and show 
that it does not lead to discontinuities in the dynamic exponent z. Section 6 contains 
concluding remarks. 
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2. Field-theoretic approach to diffusion in a random environment 

In the continuum limit the problem of a random walk in a random environment is 
described by the diffusion equation 

a t c p ( t ,  x) = DAcp(t, x ) -V[F(x)cp ( t ,  X I 1  (1) 

where cp is the probability distribution of random walks and F is a Gaussian random 
field consisting of divergence-free and curl-free parts: 

F = E + B  V X B = O  V E = O  

with zero means and independent variances: 

( E )  = ( B )  = ( B E )  = 0 

where A L  and A T  are, respectively, the coupling constants of longitudinal and transverse 
components of the drift and d is the dimension of space. 

Casting the stochastic problem (1) and (2) into the standard field-theoretic form 
we arrive at the effective action (we use the same notation for fields and their Fourier 
transforms): 

S =  -4 dx d y { A ; ' E j ( x ) K ~ ~ ( x - y ) E j ( y ) + A ; ' B j ( x ) K ; t , ( x - y ) B j ( y ) }  

+ dt  dx $( t ,  x){-d,cp( t ,  X) + DAp(  t, X )  

I 
I 

-V[E(x)cp (4  x)l -V[B(x)cp(t ,  x)l) 
where the kernels Kll and K ,  are defined through the Fourier transforms: 

(3) 

and (p' is the response field. Correlation and response functions are calculated as 
functional averages with the weight exp S. As will be shown later, above two dimensions 
this action is multiplicatively renormalisable as it stands. Therefore we prefer not to 
integrate out the drift field in order to deal with local interactions instead of the 
non-local ones, which would appear upon excluding the drift. 

We shall characterise diffusion in this system by the mean-square displacement of 
random walks. As a function of time it is assumed to have a power-like behaviour 
(up to logarithmic corrections) in the long-time limit: 

- 
( x 2 ( t ) ) -  t2/' (4) 

where z is the dynamic exponent to be calculated in the RG framework. The bar 
denotes averaging over the distribution p and the angle brackets denote averaging 
over the random drift. In terms of the field theory (3), the mean-square displacement 
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of a random walk, which started from the origin x=O at the initial moment of time 
t = 0, is related to the Green function of the diffusion equation (1) in the following way: 

- 
dw exp(-iwt)G(w, q) /4=o  

a2 I 2 (x  ( t ) ) = - -  
d q a a q a  

( 5 )  

where G is the Fourier transform of the response function (i.e. the Green function of 
(1) averaged over the random field) of the model (3): 

G ( w ,  4 ) =  I dt  d x e x p b ( t -  ~ - i 4 ( x - Y ) I ( ( c p ( t , x ) 4 ( ~ y ) ) ) .  ( 6 )  

Here double angle brackets denote functional average with the weight exp S. 
The diagrammatic representation of the perturbation expansion of correlation and 

response functions (Green functions of the field theory (3))  is constructed of elements 
depicted in figure 1, where the directed full curve represents the free propagator of 
fields cp and 4 (the arrow points from the 4 end to the cp end): 

and the broken curve corresponds to the sum Djk = Dljk + Dlljk of the propagators of 
the transverse vector field B and the longitudinal vector field E :  

The difference between the two interaction terms of (3) is effectively included in the 
definition (8), and therefore only one interaction vertex (also shown in figure 1) appears 
in the diagrams. The following properties of this perturbation expansion should be 
noted. First, as a consequence of stationarity of the drift, there is no frequency flow 
through the broken curves. Second, due to causality, all graphs containing closed 
loops of full curves vanish. Since the frequency integrals should be taken over these 
loops only, in remaining graphs there are no frequency integrations: external frequen- 
cies flow freely through full curves. Actually, one may consider them as a natural 
infrared cutoff in the theory. Third, owing to the invariance of the action (3) with 
respect to the transformation cp + scp, 4 + G/s  the fields cp and 4 appear only pairwise 
in the Green functions of the model. 

I 
P-4 I "  

W , P  w , q  
r I = -14, 

I C )  , I ,  

Figure 1. ( a )  Full line representing the propagator g,+(w, 4); the arrow points from the + end to the cp end. ( b )  Broken line representing the vector propagator D,, (q) .  ( c )  
Graphical representation of the effective interaction vertex. 
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For the dimensions of fields and parameters with respect to scaling 

4+P9  w + p 2 w  ( 9 )  

we obtain 

d,  + d+ = d dE = d ,  = d / 2 -  CY 

d A L = d A T = 2 + 2 a - d  dD=O. (10) 

The action (3) contains the fields cp and 6 in pairs. Therefore only the sum of their 
dimensions d,  + d+ is determined unambiguously. Coupling constants AT and A L  are 
dimensionless at the upper critical dimension d = d ,  = 2 +  CY, and d ,  - d = E expansions 
of the anomalous dimensions of parameters and fields will be constructed in the next 
section using the field-theoretic renormalisation group. It should be noted that, apart 
from the overall scaling (9 ) ,  the effective expansion parameters shall be invariant with 
respect to distinct scale transformations of frequencies and momenta. Therefore, 
instead of A L  and A T ,  one should use 

as the appropriate dimensionless expansion parameters. 

3. Renormalisation to two-loop order 

In order to establish the renormalisability of the model (3), we proceed with the usual 
power counting [15]. When we take into account that (i) there are no frequency 
integrations in the non-vanishing graphs and (ii) the interaction terms in (3) involve 
the gradient of the response field VG, and the corresponding momenta may be extracted 
from loop integrals for each external 6 line, which reduces the degree of divergence 
by the number of these lines, we obtain the following expression for the effective 
degree of divergence 6‘ of a one-particle-irreducible  PI) graph with external cp and 
6 legs: 

S ’ =  2 + 2 a  - ( n T +  n L )  - n ( l + 2 a )  (12 )  

where nT and n L  are numbers of external lines of transverse and longitudinal fields, 
respectively, and n is the number of pairs of external lines of fields cp and 6, Graphs 
without external cp and 6 legs do not contain loop integrals and thus for them the 
degree of divergence is meaningless. The relation (12 )  implies that for positive cr 
(corresponding to d,> 2 )  primitive divergencies may occur only in the one-particle- 
irreducible ( I P I )  Green functions rq+, FPGE and rCGB, with 6’ = 1, 6’ = 0 and 6‘ = 0, 
respectively. When CY s 0 (i.e. d ,  s 2 )  four-point and higher Green functions become 
relevant and corresponding terms should be added to the action (3). We shall consider 
the limit CY + 0 in 0 5, but otherwise the condition CY > 0 is assumed to hold. 

Since the two-point function r,+ diverges only linearly, there are no divergent 
contributions to the term +a,cp, and the action (3) may be renormalised by the counter- 
terms 

SS = d t dx 6 [ ( Z D  - 1 ) D A - ( Z1- 1 ) V ( E p  ) - (22 - 1 ) V ( B q  ) 1. ( 13 ) I 
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Taking into account these counterterms, we obtain the renormalised action in terms 
of dimensionless coupling constants U and u in the form 

S =  -1 dx d y { C , ( u D * p ' ) - ' E , ( x ) K ~ ~ ( X - y ) E , ( y )  

+ c, ( u D 2 p T 1 B ,  ( x ) K  ;;(x -Y)B, (Y )) 

I 
+ d f dx 6 ( t ,  { -a rp ( t, + zDDAp ( t, x) - zlv[ (x) p ( t, x) 1 

(14 )  

I 
-Z,V[B(X)df, x)Il 

where the usual scaling factor p has been introduced and E = 2 + 2 a  - d. The factor 
C,, defined by 

c, = 2 T ' + m / ( 2 T ) 2 + 2 a r ( i  + a )  ( 1 5 )  

where r is the gamma function, has been extracted for convenience of calculation. 
The form of the action (14 )  implies the following renormalisation of parameters (note 
that we do not renormalise the fields): 

D + Dg = zDD 

We shall use dimensional regularisation with minimal subtractions. Then it is not 
difficult to see that the vertex renormalisation constants 2, and Z2 are equal to all 
orders in perturbation theory: they are generated by graphs, which differ only in a 
prefactor at the external line of the vector field, while the loop integrals (from which 
the renormalisation constants are extracted) are the same for both vertex renormalisa- 
tions. Thus, we obtain 

U + ug = pEZ:z;% v + ug = pEz:Z;2v* (16)  

2 1  = z, (17)  

which is a relation which is responsible for the unusual anomalous behaviour of this 
model in the generic case of non-zero curl-free and divergence-free parts of the drift 
field. 

In the minimal subtraction scheme, the renormalisation constants are presented in 
the form of Laurent series in E with non-vanishing (in the limit E + 0) terms only: 

Only the residues of simple poles of these expansions are needed to determine the 
coefficient functions of the RG equations. We have calculated the renormalisation 
constants 2, and Zl to the two-loop order. The corresponding self-energy and vertex 
graphs are shown in figures 2 and 3, respectively. For the residue Zg' of the simple 
pole in the expansion of the renormalisation constant of the diffusion coefficient D 
we obtain 

U - ( 1  + 2 a ) u  [U - ( 1  + 2 a ) v l 2  [-U*+ 2(2+ a 2 ) u u +  (1 + 2 a ) u 2 ]  zg' = + + 
2 ( l + a )  1 6 ( l + ~ x ) ~  16( 1 + a ) 3  

where the first term is the contribution of the one-loop self-energy graph figure 2 ( a )  
and the second and third terms are, respectively, the contributions of the two-loop 
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Figure 2. One-loop self-energy graph ( a )  and two-loop self-energy graphs ( b )  and (c) ,  
which renormalise the diffusion coefficient D. 

Figure 3. One-loop vertex graph ( a )  and two-loop vertex graphs ( b ) - ( g ) ,  which renormalise 
the effective interaction. Two-loops graphs ( b )  and (c)  give rise to divergent in a terms. 

graphs figures 2( b )  and ( c ) .  The residue term 2:'' of the vertex renormalisation constant 
is of the form 

U U [ ( 1  - 2a2)u  + a (1 + a ) (  1 + 2 a )  U ]  U [  U + ( 1  + 2a ) U3 zj')=z(1)=-- + 
2 ( 1 + a )  16a( l+  a)' 1 6 a ( l + a ) *  

(20) 
u [ ( l + 2 a ) u  - v ]  u [ ( l + 2 a ) u -  v ]  ( l + 2 a ) u u  (1+2a)u2  + + - - 

1 6 ( 1 + ( ~ ) ~  16(1+ a)' 16 (1+ a ) 3  16(1+ a)' 
where the first term is the contribution of the one-loop vertex graph figure 3 ( a )  and 
the following terms are contributions of the two-loop graphs figure 3 ( b ) - ( g ) ,  respec- 
tively. Note the poles in a, which appear in the contributions of the graphs figures 
3 ( b )  and ( c ) .  
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4. Renormalisation group equations and anomalous dimensions 

Independence of the renormalised two-point Green function G of the arbitrary scale 
parameter p is expressed by the equation 

where 

ei = ei( - E  + 27, - 27,) ei = (U, U )  (22)  

and 

The partial derivatives in these formulae are taken with fixed values of the bare 
parameters Do, u0 and uO. Dimensional analysis leads to the relation 

G ( t ,  q ;  0, U, U, p )  = f ( t p 2 D ,  q / p ;  U, v )  (24)  
which allows us to rewrite the RG equation (21)  in the form 

For the mean-square displacement we thus obtain 

Equation (25 )  defines the dimensions of variables at the RG fixed point. In particular, 
yo gives the anomalous dimension of time. This anomalous dimension is related to 
the dynamic exponent z of (4) as follows: 

z = 2 + y , ( u * ,  U*) (27 )  
where U* and U* are the values of coupling constants at the infrared-stable fixed point 
of RG equations. As usual, the trivial (Gaussian) fixed point U* = 0, v* = 0 is stable 
above the upper critical dimension d > 2+ 2 a c ~ n d  leads to normal diffusion with 
linearly growing mean-square displacement: ( x2( t ) )  - t. When d G d, = 2 + 2a,  renor- 
malisation gives rise to three different patterns of anomalous diffusion, which shall be 
analysed below. 

If the random drift field is transverse, then the vertex renormalisation constant is 
trivial for both long-range ( a  > 0) and short-range ( a  = 0) models: 2, = 1. This follows 
from the fact that, in this case integrating by parts, one may extract also the momentum 
of the external cp line from the graphs of rrpGB, thus transforming the formally logarithmi- 
cally divergent loop integrals to convergent ones. Moreover, for the same reason the 
four-point Green function rrppGGr which becomes marginal at a = 0, actually remains 
finite in the limit E + 0 and thus our results for the transverse case hold also in the 
limit a + 0 (formally, all I P I  Green functions except Frp+ also remain finite for a < 0, 
although there is probably no useful meaning in the transverse model for a -4, i.e. 
d C s  1). We therefore conclude that y2 = 0 and 

= U(-& -2yD). (28) 
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This relation implies that the fixed-point equation P o  = 0 determines the anomalous 
dimension yD exactly to all orders in perturbation theory, as in the field-theoretic 
approach to strong turbulence [ 16,171. Nevertheless, yO should be calculated in order 
to find out the character of this fixed point. From (19) and (23) we obtain 

( 1 + 2 a )  (1+2a)  
YO=-- 2 ( l + a )  u + 4 ( l + a ) 2 u 2 *  

Equations (28) and (29) confirm to two-loop order the perturbative stability of the 
non-trivial fixed point U* > 0, determined by yD( U*) = ~ / 2 .  In this case the anomalous 
behaviour of the mean-square displacement of the random walk is superdiffusive and 
given by 

- 
(30) ( x 2 (  t ) )  - t 2 / ( 2 - E / 2 )  

where E = 2 + 2 a  - d > 0 and a 3 0. We emphasise that this expression is exact for 
both the long-range and the short-range case (it does not even depend on a explicitly). 
At the upper critical dimension d = d ,  = 2 + 2a, the behaviour is also superdiffusive with 

In the generic case, when both longitudinal and transverse components of the drift 
are present, the fact that vertex renormalisation constants 2, and 2, are equal leads 
to the remarkable feature that, instead of the usual non-trivial fixed point, the RG 

equations corresponding to (22) and ( 2 3 )  have a j x e d  line. The fixed line is defined 
by the equation 

2y,(U, u)-2yO(u, U ) - & = ( )  (32) 

and at two-loop order accuracy is represented by a hyperbola: 

( 1 + 2 a )  ( 1 + 2 a ) ( 1 + a + a 2 )  ( 1 + 2 a )  
uu -- 

2 ( 1 + a ) 2 u  - 4 a (  1 + a ) 3  ( l + a )  (33) 

which intersects the U axis at the point 

and asymptotically approaches the U axis from the right in the (U, U )  plane. Although 
the detailed form of the fixed line is subject to higher-order corrections, its asymptotic 
behaviour in the vicinity of the U axis remains the same due to vanishing (see below) 
on the U axis of loop integral corrections to the longitudinal beta function pu. From 
equations (17), (22) and (23) it follows that 

Therefore the ratio of running coupling constants remains fixed in the course of 
renormalisation: 

where p = 1 refers to the initial momentum scale. For calculations in perturbation 
theory, it is convenient to choose the transverse coupling constant U as the primary 
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coupling constant, the flow of which shall be defined from the corresponding RG 

equation, while the flow of the longitudinal coupling constant U is determined by the 
relation (35). To two-loop order, calculations yield 

U( 1 + 2a)  U’( 1 + 2 a )  p u = u  - - E +  + [(1+ a + a ’ ) ~  - 2 a ( l +  a)]) (36) ( ( l + a )  4 ~ x ( l + a ) ~  

where K is the constant ratio of coupling constants (35). The expression (36) shows 
that the fixed line (33) is perturbatively infrared stable and therefore controls the 
long-distance and long-time behaviour of this model. As a consequence of the 
asymptotic behaviour of the fixed line, however, for large enough ratios K = U( 1)/ U( 1) 
the relevant part of the fixed line obviously lies beyond the region of applicability of 
the perturbation theory. The renormalisation group flow of coupling constants U and 
U corresponding to equations (32)-(35) is sketched in figure 4. 

U 

I I 3 / 

* 
0 v = v  v 

Figure 4. Schematic RC flow of renormalised coupling constants in the (U, U )  plane. The 
arrows show the direction of RG flow with decreasing momentum scale and the broken 
line corresponds to the borderline case, when K = K~ = 1 + 2n - (1 - n ) ~  + O( E ’ ) .  Above 
this line the model exhibits subdiffusive behaviour and superdiffusive below it. 

The anomalous behaviour, controlled by perturbative RG, is not universal. In 
particular, the dynamic exponent z at the fixed line takes the form 

with explicit dependence on the relative strength (through K )  of longitudinal and 
transverse parts of disorder. At the upper critical dimension d = d,  = 2 + 2a, a > 0, we 
obtain logarithmic corrections of the form 

(X2(t))- t(ln t ) t [ ’ - ~ l ( * + 2 0 ) 1  (38) 
In this case the fixed line coincides with the U axis, and for finite values of K RG flow 
drives the system to the endpoint of the fixed line (i.e. to the Gaussian fixed point): 
U* = U* = 0. However, as a reminiscence of the non-universal behaviour at E > 0, the 
power of the logarithmic anomaly depends on the direction in which this fixed point 
is being approached in the (U, U )  plane. 
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When the ratio K = 0, expressions (37) and (38) reduce to the transverse ones (30) 
and (31). When K grows, the anomaly in diffusion changes from superdiffusive 
( O S  K < K ~ )  to subdiffusive ( K  > K ~ ) ,  where the borderline value of K = K ~ ,  correspond- 
ing to normal diffusion, to two-loop order is equal to K~ = 1 + 2 a  - E (  1 - a )  + O( E * ) .  

At the upper critical dimension d = d ,  = 2 + 2 a  slow-transient corrections similar to 
those in the mixed short-range case [4, 81 occur: 

For isotropic drift (i.e. for K = 1, which in our case, when a > 0, corresponds to 
superdiffusive behaviour) we recover the one-loop result of [lo, 121. However, in the 
generic case the renormalisation of the four-point function rsmdd in two dimensions 
is not trivial, and thus in the limit a + 0 our results do not coincide with those of the 
short-range model [2,4, 51. Moreover, as can be seen from (37), the dynamic exponent 
z diverges in the limit a + 0. This situation may be cured by taking into account the 
four-point function rVpGd, which is irrelevant for a > 0, but becomes marginal in the 
limit a + 0, and leads to divergences in a. We shall deal with this in the next section. 

In the case of purely longitudinal drift we have explicitly checked that to two-loop 
order the loop integral contributions to the PU function vanish and it thus remains 
trivial: P,, = - - F u / ~ .  This may be shown to be the case to all orders in the perturbation 
theory. Physical arguments in favour of this conjecture were given by Kravtsov et a1 
[9], and a formal proof using these ideas has been given in [ 111. A different approach 
to this problem, based on the geometrical properties of a non-linear v model, has been 
suggested in [lo]. Triviality of the longitudinal beta function also implies that the 
contribution of the relevant (for d s 2) four-point function rPspd3: vanishes in the 
two-dimensional short-range case. Therefore in the limit a + 0 the long-range results 
coincide with the short-range ones. Hence, the long-time behaviour of the mean-square 
displacement of a random walk in a medium with potential drift is controlled by strong 
disorder effects below the upper critical dimension and, at the upper critical dimension, 
is non-universal with continuously varying anomalous dimension, for which a two-loop 
calculation yields 

U 
z=2+- + o ( ~ ~ ) .  

2(1+ a )  

Note that the two-loop contribution to the anomalous dimension vanishes, as in the 
short-range case [3]. It has been argued that, due to the triviality of the longitudinal 
beta function, all the higher-order contributions to the dynamic exponent vanish [3, 
101. Although this conjecture is supported by two-loop calculations, we do not find 
the undetailed argument of [3, 101 entirely convincing, and thus consider this an open 
problem. 

5. Crossover between long-range and short-range models 

From equations (36) and (37) it can be seen that both the beta functions and the 
dynamic exponent z diverge in the limit a + 0, and thus- this formal short-range limit 
is singular in the general case of constrained drift field. These extra divergences are 
due to the four-point subgraphs shown in figure 5 of the vertex graphs figures 3 ( b )  
and (c). These subgraphs are finite when a > 0 but they become logarithmically 
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Figure 5. The four-point subgraphs of the two-loop vertex graphs figures 3 ( b )  and (c), 
which give rise to the extra divergences in (Y due to their logarithmic behaviour in two 
dimensions. 

divergent in two dimensions (i.e. when a = 0). This expresses the fact that the corre- 
sponding four-point interaction, which is irrelevant for a > 0, becomes marginal in the 
limit a + 0. The effect of this 'dangerous irrelevant operator' is seen already at small 
non-zero values of a = O( E ) ,  and more exactly the crossover value of a may be found 
in the standard way [15, 181 by examining the stability of the long-range fixed point 
against the perturbation by the following composite field operator: 

04= dt  dt '  d x c p ( t , x ) V ( p ' ( t , x ) c p ( t ' , x ) V ~ ( t ' , x ) .  111 
Relevance of this operator is determined by the asymptotic behaviour at small momenta 
of I P I  Green functions with one insertion of 04, relative to the behaviour of the same 
Green functions without the insertion. The asymptotics of Green functions with such 
operator insertions may be found from the renormalisation of these composite field 
operators [15, 181. In our case, there are no composite operators of the same or lower 
naive dimension as O4 obeying the symmetries of the model. Therefore the renormalisa- 
tion may be carried out without operator mixing. For simplicity, we shall consider 
the four-point I P I  Green function with one O4 insertion: 

r404 = ~ q q G o 4 ( { % L  {q l ;  U, U, D, 

r4 = rVq@({4J, {%I; U, u,D, P I .  

(42) 

and its counterpart without the insertion 

(43) 

We have not renormalised the fields (p' and cp. Therefore the renormalised (r) and 
bare (r")) Green functions are related as follows: 

leading to the renormalisation group equations: 

(44) 
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with 

Dimensional analysis yields 

4229 

(46) 

From (45) and (47) we obtain 

These equations define the scaling dimensions of the Green functions 

dr,,, = 2 + YO4( U* Y U*) d r 4 = 4 - d  +2yD(u*, U*). 
By definition, the scaling dimension of the composite operator 0, is the difference of 
these dimensions: 

d04=d-2+Y04(U*, v * ) - 2 ’ Y D ( u * ~  U*)* (49) 
If this scaling dimension is positive, then the operator 0, is irrelevant at small momenta 
and frequencies, otherwise it is marginal or relevant. The anomalous dimension yo, 
is given, at the one-loop order, by the graphs of figure 6 linear in the four-point 

( b  1 

1’1 I I 

I I 
I /  I 

( c  ) 

w 

Figure 6. One-loop graphs, which renormalise the four-poir interaction vertex. The chain 
line denotes the sum of the drift field propagator (broken line of figure 1 )  and the isotropic 
(a a,,,,,,) four-point vertex denoted by the dotted line. Note that there is no frequency 
flow through either of these lines. For renormalisation of the four-point composite operator 
O4 only graphs linear in four-point coupling are needed, while renormalisation of the 
four-point interaction vertex in the mixed regime includes all these graphs. 
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interaction given by (41), which we have denoted by the dotted line in order to remind 
us that there is no frequency flow through the vertex in this direction. Since we are 
interested in small a = O ( E ) ,  we set a = 0 in the one-loop expressions and obtain 

U - v  
Yo, = -. 2 

Thus, at one-loop order, 

do, = 2 - i& ( 1 + K ) (51 )  

(Y <:&(I + K ) .  (52) 

and the operator O4 becomes marginal (or relevant) when 

When this condition is satisfied, the long-range fixed point becomes unstable and the 
four-point interaction (41) has to be included in the renormalisation scheme. 

In this case, the four-point interaction has to be treated on an equal footing with 
the three-point interaction terms of the action (14). This can be done following Weinrib 
and Halperin [19], and this analysis has been carried out by Gevorkian and Lozovik 
[ 141 for the case of isotropic ( K = 1 )  drift. We shall present here a similar treatment 
of the generic case ( K  # 1 )  with independent longitudinal and transverse couplings. 
However, it should be noted that the crossover from the pure long-range case to the 
'mixed-coupling' regime with competing three-point and four-point interactions cannot 
be investigated in this scheme, since the four-point term is always present due to the 
very construction of the renormalisation procedure. On the other hand, a description 
of the crossover from the mixed-coupling regime to the purely short-range case cannot 
be included to the composite operator renormalisation treatment presented above. 
Thus, the full analysis of the crossover between long-range and short-range models 
should include both methods. On adding the four-point interaction term the renor- 
malised action may be written in the form 

r 

+ c ~ ( V D Z ~ ' ) - ' B i ( x ) K ; ~ ( x  -y)Bj(y)] 

+ dt  dx $( t, x){-a,cp( t, X) +ZDDAcp( t, X) i 
-Z,V[E(x)cp(t ,  X I 1  -Z*V[B(x)cp(t ,  x)l)  

+~C,'wD2p-'Z4 dt  dt '  d x c p ( t , x ) V $ ( t , x ) c p ( t ' , x ) V $ ( t ' , x )  (53) 

where w is the totally dimensionless coupling constant, 2, is the renormalisation 
constant of the four-point interaction, C, is the normalisation factor (15 )  and the 
parameter S is defined as 

111 
S = 2a - E = d -2. (54) 

(55) 

The action (53) leads to the following renormalisation of the four-point coupling: 

w +. WO = wp-'z4z;* 
while the other parameters are renormalised according to (16). From the preceding 
analysis of the stability of the long-range model it follows that the mixed-coupling 
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regime sets in at a = O( E ) .  Therefore, we are interested in the case when 6 = O ( E ) ,  in 
which the RG analysis is very similar to that of the long-range case. The main difference 
is that now the divergences of the diagrammatic expansion show in the form of 
(multiple) poles in the quantities A = r6 + P E ,  where p and r are rational numbers, 
instead of the usual poles in E.  The expression (18 )  for the renormalisation constants 
is thus replaced by the expansion 

2, = 1 + [Z,]‘”+ [Z,]”’+. . . (56) 
where [Z,]‘” denotes terms with simple poles in A, [Zt]‘2) denotes terms with double 
poles, etc. The ratio of the three-point coupling constants remains renormalisation 
invariant. Therefore the behaviour of the system under renormalisation is effectively 
determined by two beta functions. We use 

where 

At one-loop order we obtain 

The one-loop graphs, which contribute to the renormalisation constant Z,,  are shown 
in figure 6. The four-point vertex contributions to 2, and 2, are given by the graphs 
figures 2 ( a )  and 3 ( a ) ,  respectively, in which the internal broken line is replaced by 
the dotted line of figure 6. The RG equations corresponding to (58) have the Gaussian 
fixed point U* = U,, = w* = 0, a non-trivial ‘short-range’ fixed point 

v* = U* = 0 w* = -2s  (59) 
and a ‘mixed-regime’ fixed line 

(60) 
E ( E f 2 8 )  K E  

U* = U* = KV* w* = 
26+ & ( I +  K )  2 6 s  & ( I +  K )  

whose stability conditions divide the (6,  E )  plane into three stability regions. In certain 
parts of the stability region of the mixed-regime fixed line, oscillating corrections to 
scaling laws may occur (a detailed analysis of this feature in the isotropic case was 
carried out by Gevorkian and Lozovik [ 1 4 ] ) .  However, this does not affect the values 
of anomalous dimensions, so therefore we will not dwell on it here. Rather we shall 
investigate the behaviour of the dynamic exponent z (or, equivalently, the anomalous 
dimension y D )  as a function of a. The stability regions of the fixed points as well as 
the fixed lines (including the long-range fixed line) are depicted in figure 7. Our 
notation for 6 and E is different from that of Gevorkian and Lozovik; if we label their 
parameters by the subscript ‘GL’, then the relation between the parameters is E = SGL 
and 

At one-loop order the anomalous dimension of the diffusion coefficient D for the 
mixed-coupling model ( 5 3 )  is given by 

YD(v*  9 w*) = t(  - l ) v *  (61) 
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E 

4 E + 26.0 

\ 

Figure 7. Regions of stability of the RG fixed points and lines in the (8, E )  plane. The 
stability region of the Gaussian fixed point is denoted by ‘G’, short-range fixed point by 
‘sR’, mixed fixed line by ‘M’ and long-range fixed line by ‘LR’. Depending on the value 
of K, the border between mixed and long-range regions may lie anywhere between the 
positive 8 axis and the border of mixed and short-range regions. 

which, for both the Gaussian and short-range fixed points, yields zero and for the 
mixed fixed line leads to the expression 

K - 1  E ( E + 2 6 )  
z=2+-  

2 2 6 f E ( l + K ) ‘  

The long-range expression ( 3 7 )  and the mixed-case expression ( 6 2 )  for z do not coincide 
at the borderline value of a ( 5 2 ) .  However, it should be taken into account that the 
long-range formula was obtained for arbitrary finite a>O and small E, while the 
mixed-case expression was derived assuming that a = O( E ) .  Expanding the right-hand 
side of ( 6 2 )  in & / a ,  we obtain 

K - 1  K ( K - I ) E ’  
2 8 a  

z = 2 + - - E - - - + 0 ~ E 3 a - 2 )  

which coincides with the expansion in a = O( E )  of the long-range expression ( 3 7 )  for 
z. Thus, to this accuracy the long-range and mixed-case expressions for the dynamic 
exponent z coincide, but this may well be the case to all orders. This connection is 
obtained for a = O ( E )  and it is not directly related to the borderline value of a ( 5 2 ) ,  
which follows from the composite-operator treatment. Since the purely long-range 
model becomes unstable with respect to the short-range correlations at this value of 
a, it seems, however, reasonable to regard this as the borderline value of a between 
the two descriptions. It is also possible that a similar mechanism renders the anomalous 
dimension continuous in the closely related model of the ‘true’ self-avoiding random 
walk [ 5 ,  121, but we have not investigated this in detail. At the borderline E +26 = 0 
between the mixed and short-range regimes the one-loop contribution to the mixed-case 
dynamic exponent ( 6 2 )  vanishes and thus this exponent is continuous to the leading 
non-trivial order also at this border, since the one-loop contribution to the exponent 
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in the short-range case vanishes identically, as is seen from (59) and (61), and has 
been earlier shown [2 ,  41 for E = 0 and [14] for E # 0, K = 1. Strictly speaking, this 
applies to the case with K it 1 only, because the first-order contribution to z is also 
identically zero in the mixed regime in the case of isotropic ( K  = 1) drift [14]. In this 
case the leading contribution to the anomalous dimension yo for the mixed coupling 
model is given by 

This expression differs from that of Gevorkian and Lozovik [14] due to the different 
normalisation conditions used. At this mixed fixed line we obtain from (60) and (63) 

z =2+:&2- ;&6  (64) 

which is in agreement with the a = O ( E )  expansion of the long-range expression for 
z (37) when K =1, and at the borderline ~ = - 2 6  coincides with the short-range 
expression [2 ,  8, 141, z = 2+2S2, thus confirming the continuity of z to leading 
non-trivial order also in the case K = 1. 

6. Conclusion 

In this paper we have carried out a renormalisation group analysis of the long-time 
behaviour of diffusion in a random environment with correlations falling off like l / q 2 *  
in the momentum space ( l / lx  - ~ ’ l ~ - ~ ~  in the coordinate space). We have calculated 
the renormalisation group beta functions and the dynamic critical exponent z in the 
weak disorder limit to two-loop order and found singularities in the form of poles in 
a. These singularities appear due to a ‘dangerous irrelevant’ interaction, which has to 
be included in the renormalisation procedure for small a (i.e. near two dimensions). 
We have investigated the effect of this interaction at one-loop order and shown that 
the dynamic exponent z remains a finite and continuous function of the parameter a 
in the ‘short-range’ limit a + 0. 

For finite a > 0 below the upper critical dimension d,= 2+2a, the long-time 
behaviour is controlled by an infrared-stable fixed line of the renormalisation group 
equations and heavily depends on the relative strength of the curl-free and divergence- 
free parts of the random drift. For purely divergence-free drift the exponent of the 
corresponding superdiff usive behaviour is determined exactly by the renormalisation 
group equations. In the presence of both components of the drift field the E expansion 
of the dynamic exponent cannot be determined exactly, and to two-loop order it 
corresponds to superdiffusive behaviour for small enough values of the ratio K of the 
longitudinal and transverse coupling constants: 0 < K < K~ = 1 + 2 a  - (1 - Q ) E  +0( E * ) ,  

leads to normal diffusion at the borderline value K = K ~ ,  and subdiffusive behaviour 
above it. In the limit of vanishing transverse coupling the long-time behaviour of this 
system is controlled by strong disorder effects and thus remains uncertain in the present 
perturbative treatment. At the upper critical dimension in the generic case logarithmic 
corrections to normal diffusion occur, leading to superdiffusive behaviour for 0 G K < K~ 

and subdiffusive for K > K ~ .  In the case of purely longitudinal drift, a power-like 
subdiff usive anomaly takes place with an exponent continuously depending on the 
coupling constant. 
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